DNA Primes Math Blog

DNA Primes Math BlogDNA Primes Math BlogDNA Primes Math Blog
  • Home
  • My Blog
  • OEIS
  • Papers
  • Prime Numbers
  • Riemann Zeta
  • Infinite Sums/Products
  • PrimeZeta
  • Complex Functions
  • More
    • Home
    • My Blog
    • OEIS
    • Papers
    • Prime Numbers
    • Riemann Zeta
    • Infinite Sums/Products
    • PrimeZeta
    • Complex Functions

DNA Primes Math Blog

DNA Primes Math BlogDNA Primes Math BlogDNA Primes Math Blog
  • Home
  • My Blog
  • OEIS
  • Papers
  • Prime Numbers
  • Riemann Zeta
  • Infinite Sums/Products
  • PrimeZeta
  • Complex Functions

Infinite Sums and Products

Close form formulas for Euler-Ramanujan infinite products 

Infinite sums generating sequences of integers

a(n) = (1/e) * sum_{j>1} j!/(j-n)!^2 [A002720]

a(n) = (1/e^n)*Sum_{j >= 1} j^n * n^j / (j-1)! [A299824]

a(n) = (1/e^n)*Sum_{j >= 1} j^n * n^j / (j-1)! [A299824]

1, 2, 7, 34, 209, 1546, 13327, 130922, 1441729, 17572114, 234662231, 3405357682, 53334454417, 896324308634, 16083557845279, 306827170866106, 6199668952527617, ...

a(n) = (1/e^n)*Sum_{j >= 1} j^n * n^j / (j-1)! [A299824]

a(n) = (1/e^n)*Sum_{j >= 1} j^n * n^j / (j-1)! [A299824]

a(n) = (1/e^n)*Sum_{j >= 1} j^n * n^j / (j-1)! [A299824]

2, 22, 309, 5428, 115155, 2869242, 82187658, 2661876168, 96202473183, 3838516103310, 167606767714397, 7949901069639228, 407048805012563038, ...

a(n) = (1/e^n)*Sum_{j >= 1} j^n * n^j / (j-3)!

a(n) = (1/e^n)*Sum_{j >= 1} j^n * n^j / (j-1)! [A299824]

a(n) = e^( Sum_{j >= 1} Sum_{k=1, j} ln(j/k)) [A001142]

4, 216, 7371, 239424, ...

a(n) = e^( Sum_{j >= 1} Sum_{k=1, j} ln(j/k)) [A001142]

a(n) = e^( Sum_{j >= 1} Sum_{k=1, j} ln(j/k)) [A001142]

a(n) = e^( Sum_{j >= 1} Sum_{k=1, j} ln(j/k)) [A001142]

1, 1, 2, 9, 96, 2500, 162000, 26471025, 11014635520, 11759522374656, 32406091200000000, 231627686043080250000, 4311500661703860387840000, ...

a(n) = Sum_{j >= 1} Sum_{k=1, j} C(j,k) [A000295]

a(n) = e^( Sum_{j >= 1} Sum_{k=1, j} ln(j/k)) [A001142]

a(n) = Sum_{j >= 1} Sum_{k=1, j} C(j,k) [A000295]

0, 0, 1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, 32752, 65519, 131054, 262125, 524268, 1048555, 2097130, 4194281, 8388584, 16777191,...

a(n) = (1/e) sum_{j>1}j!^2/(j-8)!^3

a(n) = e^( Sum_{j >= 1} Sum_{k=1, j} ln(j/k)) [A001142]

a(n) = Sum_{j >= 1} Sum_{k=1, j} C(j,k) [A000295]

5, 87, 2971, 1632121, 12962661, 1395857215, 194634226067, 33990369362241, ...

Copyright © 2018 DNA Primes Math Blog - All Rights Reserved.

Powered by

  • OEIS
  • Papers
  • Prime Numbers
  • Riemann Zeta
  • Infinite Sums/Products

This website uses cookies.

We use cookies to analyze website traffic and optimize your website experience. By accepting our use of cookies, your data will be aggregated with all other user data.

Accept